Department of Computer Science & Engineering Indian Institute of Technology Kharagpur

Mid-Semester Test Soft Computing Applications: CS60108 Spring Semester – 2023

Full Marks: 60

Time: 2 hours

Answer ALL Questions

Q. 1

Suppose, *age* is defined over a set of real numbers in the range [0...100]. Three fuzzy sets *Young*, *MA* and *Old* are defined with their respective membership functions given below.

```
Young(x) = \{
```

```
1, if age(x) \le 25,

(35-age(x))/10, if 25 < age(x) \le 35,

0, if age(x) > 35

}

MA(x) = \{

0, if age(x) \le 25,

1- (47.5-age(x))/22.5, if 25 < age(x) \le 47.5,

70-age(x)/22.5, if 47.5 < age(x) \le 70

}

Old(x) = \{

0, if age(x) \le 65,

1-(75-age(x))/10, if 65 < age(x) \le 75,

1, if age(x) > 75
```

}

Find the fuzzy sets for the following:

- a) Not Old
- b) Either Young or MA
- c) Neither Young nor Old

Q. 2

Given the following rule:

IF resistance is High THEN current is Low

Also, given the following relational matrix:

		150mA	50mA	10mA
R =	10K	[0.8	0.7	0.9]
	50K	0.6	0.4	0.3
	100K	0.2	0.5	0.1

Suppose, the membership distribution of very high (VH) resistance is given by

[3+3+4]

Determine the membership distribution of very low (VL) current (i.e., $\mu_{VL}(current)$) from the above data.

Q. 3

Suppose, we have a universe of integers, $Y = \{1, 2, 3, 4, 5\}$. We define the following linguistic terms as mapping onto Y:

"Small" = {(1, 1), (2, 0.8), (3, 0.6), (4, 0.4), (5, 0.2)}

"Large" = {(1, 0.2), (2, 0.4), (3, 0.6), (4, 0.8), (5, 1)}

Construct the following phrase (as a fuzzy set, say *A*) with the help of the above linguistic terms with hedges:

"not very Small and not very, very Large"

[2+3+5]

[10]

Q. 4

a) Draw the schematic diagram of the simple model of perception. Clearly indicates what are the unknown parameters in your model.

[2+1]

b) The following is a training set for a 2-class (as 0 and 1) classification problem. Iterate the perceptron through the training set and obtain the weights. The algorithm which you followed preferably be stated before. You may make a reasonable assumption if any.

INF	PUT	OUTPUT
X1	X ₂	Y
0.25	0.353	0
0.25	0.471	1
0.50	0.353	0
0.50	0.647	1
0.75	0.705	0
0.75	0.882	1
1.0	0.705	0
1.0	1.0	1

[3+4]

Q. 5

- a) Clearly draw the Vanilla neural network with all hyperparameters in it.
- b) Explain the Steppes descent method and hence the delta rule to learn an unknown parameter in the network.

[4]

[4]

c) Give a detailed account of all layers in the Vanilla neural network in terms of their input and output.

[3×2]

d) Following the Back propagation algorithm, derive the modified values of v_{ij} and w_{jk} , where v_{ij} denotes the weight of the connection between the *i*-th perceptron in the input layer to the *j*-th perceptron in the hidden layer and w_{jk} denotes the weight of the connection between the *j*-th perceptron in the hidden layer to the *k*-th perceptron in the output layer.

[3+3]